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RELATIONSHIP BETWEEN THE AERODYNAMIC DAMPING DERIVATIVES MEASURED 

AS A FUNCTION OF INSTANTANEOUS ANGUIAR DISPLACEMENT AND 

THE AERODYNAMIC DAMPING DERIVATlvES MEASURED 

AS A FUNCTION OF OSCILIATTON AMFLITUDE 

By Bass Redd, Dennis M. Olsen, and Richard L. Barton 
Manned Spacecraft Center 

SUMMARY 

A method i s  presented which relates the aerodynamic damping der ivat ives  
as a function of instantaneous angular displacement with the aerodynamic deriv- 
a t ives  as 8 function of o sc i l l a t ion  amplitude. Each der ivat ive i s  expressed 
i n  a power series, and by applying the IOryloff-Bogoliuboff equivalent l inear-  
i za t ion  technique, the solut ion is  obtained by equating l i k e  coeff ic ients .  It 
i s  assumed t h a t  t he  damping per  cycle i s  small, the  damping coef f ic ien t  is  
symmetrical, and the pitching moment i s  l inear.  Comparisons with numerical 
in tegra t ion  r e s u l t s  shuw no appreciable error .  

The e f f e c t  of a nonlinear pitching moment i s  considered for a represent- 
a t i v e  case and i s  found t o  be small except when approaching unstable trim. 

INTRODUCTION 

The aerodynamic p i t ch  damping coeff ic ient  can be obtained from wind-tunnel 
tests by two general  methods. 
amplitude forced-osci l la t ion tests (ref. l), the aerodynamic p i t ch  damping 

I n  one method, an example of which i s  small- 

coef f ic ien t  C + Cm i s  measured as a function of instantaneous angular m q & 
displacement 
of a t tack .  
o r  f ree-osc i l la t ion  wind-tunnel tests (ref. 2) ,  the average aerodynamic p i tch  

0 by forced osc i l l a t ions  of small amplitudes a t  d iscree t  angles 
I n  the  other method, examples of which are b a l l i s t i c ,  f iee- f l igh t ,  

1 

damping coef f ic ien t  C- + C- i s  measured a s . a  function-of oscil lation-peak 
, m m. 9 a 

amplitude eo by determining the change i n  peak amplitude per  cycle. 

To be used i n  current  d i g i t a l  t r a j ec to ry  cmputer programs the  aerodynamic 
~ 

1 angular displacement r a the r  than osc i l l a t ion  peak amplitude. Since b a l l i s t i c ,  
p i t ch  damping coef f ic ien t  must be expressed as a function of ins@,ntaneous 

I 



f ree-f l ight ,  and free-osci l la t ion wind-tunnel experiments determine t h e  damping 
as a function of o sc i l l a t ion  peak amplitude, a method of expressing these re- 
sults as a function of instantaneous angle of a t t ack  i s  needed. It is  the 
purpose of this paper t o  develop a method whereby damping as a function of 
osc i l la t ion  amplitude can be expressed as a function of instantaneous angle of 
a t tack .  
function of o sc i l l a t ion  amplitude when damping as a function of instantaneous 
angle of a t tack i s  known. 
time his tory t o  be constructed without resor t ing  t o  numerical in tegra t ion  of 
t he  equation of motion. 

The method has the  added capabi l i ty  of determining the damping as a 

This l a t t e r  property allows an oscillation-amplitude 

SYMBOLS 

C m 

m C 
a 

+ %. 9 a m 

c- + c- m. q a m 

I 

k 

P 

9 

4, 

a r b i t r a r y  constants i n  the  series expansion of f ( 9 )  

cm a r b i t r a r y  constants i n  the cubic s e r i e s  f o r  

a r b i t r a r y  constants i n  the  series expansion of 
P O )  

Pitching mment 
s, SD 

pitching-moment coeff ic ient ,  

damping i n  p i t ch  coeff ic ient ,  

average damping i n  p i t ch  coef f ic ien t  over one fill 
osc i l l a t ion  

reference length 

viscous damping as a function of 9 

viscous damping as.a function of 

mass moment of i n e r t i a  

slope of assumed l i n e a r  pitching mment 

power per cycle as a function of f ( e )  

P O )  
power per cycle as a function of 

angular pi tching ve loc i ty  

dynamic pressure 
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S reference area 

T period 

t time 

v h e - s t r e a m  veloci ty  

a angle of a t t ack  

& r a t e  of change of angle of a t t ack  

e instantaneous angular displacement 

o s c i l l a t i o n  peak amplitude 

e 7 C  

%t 
6 

l imit-cycle amplitude, l i n e a r  pi tching moment 

l imit-cycle amplitude, cubic pitching moment 

unstable trim amplitude, cubic pitching moment 

angular ve loc i ty  

'e' angular accelerat ion 

a r b i t r a r y  angular displacement eN 

w angular frequency, T 2n 

ANALYSIS 

Derivation of Equations 

The second-order d i f f e r e n t i a l  equation of motion f o r  a single-degree-of- 
freedom o s c i l l a t i n g  system with viscous damping proportional t o  displacement i s  

Is + f ( 9 ) b  + ke = 0 (1) 

where f ( 9 )  i s  the instantaneous viscous damping and k i s  the  slope of an 
assumed l i n e a r  pitching moment. The function f ( e )  corresponds t o  the damping 
coef f ic ien t  as found i n  a forced osc i l l a t ion  experiment and, f o r  a vehicle 
symmetrical i n  the p i t ch  plane, can be expressed as 

f ( 9 )  = A + A 0 2 + A48 4 + A68 6 + Age 8 + ... 
2 
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If, instead of small-amplitude osc i l l a t ions  about a fixed mean angle of 
a t tack ,  the vehicle had osc i l la ted  harmonically about t he  trim angle w i t h  a 
large amplitude, the power per  cycle would be 

For a free osc i l la t ion ,  the  equation of motion i s  

(4) 

where f(B0) 

The f’unction f ( B o )  corresponds t o  the average damping coef f ic ien t  as deter-  

mined in  a free-osci l la t ion experiment, and f o r  a vehicle symmetrical i n  the 
p i t ch  plane, can be expressed as 

i s  the viscous damping as a l’unction of o sc i l l a t ion  amplitude. 

2 4 6 8 
2 0  8 0  f(Q = c + c e + c4e0 + c6eO + c 9 + ... ( 5 )  

The puwer per cycle can be wri t ten  as 

Kryloff and Bogoliuboff (ref. 3) have sham that equation (4) i s  the  equivalent 
l i n e a r  d i f f e r e n t i a l  equation of the nonlinear equation of motion, equation (1). 
As i n  reference 4, where the power per cycle i s  assumed t o  be the same over a 
given osci l la t ion,  then 

Solving for f (go) 
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I o r  i t s  equivalent 

2 4 6 8 8 + A48 + A 6 8 + A88 + ...) b2dt 
- 4 6 8 c + c e2 + c4eo + C6B0 + c8e0 + .. . - 

2 0  
I 

( 9 )  

For almost harmonic motion 8 can be replaced by 

If the damping moment i s  s m a l l ,  then 8 w i l l  be a slowly varying function 
, of t i m e  during the period T and as a first approximation can be considered 
' constant over a cycle. , sion 

The r e l a t ion  of equation (10) allows a straightforward 
Integrat ing and carrying out the  indicated divi-  integrat ion of equation (9). 

I 
1 Equating l i k e  coeff ic ients  

C = A  

C2 = *A2 

c4 =g4 
'6 =&A6 

5 3 - 1 2  -+A a 
1 Terms beyond the eighth order were not considered. 

If, fran a forced-oscil lation test ,  f ( 8 )  
can be determined d i r e c t l y  as 

i s  k n m  i n  a power series such 
as equation (2), then f(eo) 

1 2 1 4  6 7  
4 2 0  8 4 0  a 6 0  1 2 8 8 0  f(eo) = A  + -A 8 + -A 8 + 5 A  8 + -A e8 

On the other hand, i f  f (eo) i s  k n m  from a free-osci l la t ion tes t  and can be 

expressed i n  a power series such as equation (5), f ( 8 )  can be found d i r e c t l y  

5 



as 

2 4 64 6 128 8 f ( 9 )  = C + 4c28 + 8C49 + --c 8 + ___c 8 5 6  7 8  

\ 
Since 

%SD2 
f ( 9 )  = - 

2v (“mg + “m.) a 

and 

and C, + C, i s  found. m m. q SL 9 U 
‘m + ‘m the  desired re la t ionship  between 

Methods of Application 

Determination of C- + C- from measured values of C + Cm .- If 
dL m m. m 

U 
values o f  Cm + Cm as a function of angular displacement 9 have been 

measured i n  small-amplitude forced-oscil lation tests, the  damping coef f ic ien t  
can be expressed i n  a p m r  se r i e s  

g 6, 

Then, From equation (13) t he  damping coef f ic ien t  as a f’unction of amplitude 
of osc i l la t ion  i s  

With t h i s  calculated C- + C- the  oscillation-amplitude time his tory  can be m m. 
9 a 

determined by using t h e  logarithmic decrement r e l a t ion  

I f  t he  measured values of C + C shuw negative damping a t  small m m. g a 
amplitudes and posi t ive damping a t  la rger  amplitudes, a l i m i t  cycle i s  indicated. 

6 



The amplitude of t h i s  l i m i t  cycle is  the amplitude a t  which t h e  osc i l la t ion-  
amplitude t i m e  h i s tory ,  determined by using equation (16), l eve ls  out. 
amplitude of t h e  l i m i t  cycle can a l s o  be found by solving f o r  the  roots  of 
the  power series representation of C- + C- . The two real roots ,  opposite 

i n  s ign but equal i n  magnitude, near trim w i l l  be the  amplitude of t h e  l i m i t  

The 

m m. 
q U 

' 

I cycle. 
1 

1 from measured values of C- + C- .- I f  an m m. ri U 

Determination of Cm + Cm 

~ 

~ tude can be calculated with t h e  following equation: 

oscillation-amplitude tim: h i s t o r y  such as tha t  sham i n  sket:h (a) i s  obtained 
from a f r ee -osc i l l a t ion  t e s t ,  t he  damping as a function o f  o sc i l l a t ion  ampli- 

n 

I Numerical Cmparisons 

t 
e 

I 7 

Q 0 , l  

eo, 2 

T 4  

Sketch (a) 

Then, 

equation ( 5 ) .  
R-om equation (14) .  
of angular displacement i s  

f(Qo) can be p lo t ted  aga ins t  eo and expressed i n  the power s e r i e s  of 

Damping as a function of angular displacement can be calculated 
From equation (l5), the  damping coe f f i c i en t  as a function 

-- c + cm - 2v f ( 0 )  
m q ri gsD2 

The following two theo re t i ca l  methods have been presented t o  relate the  
p i t ch  damp$ng derivatives as a function of angular displacement with t h e  p i t c h  
damping der iva t ives  as a f'unction of osc i l la t ion  amplitude: 



(1) Determination of C- + C- from measured values of C + Cm 
m m. m 
9 U 9 6 

from measured values of C- + C, 
m m. 

9 U 9 U 

(2)  Determination of C + Cm m 

I n  order t o  ascer ta in  the  accuracy of these methods, a r b i t r a r y  damping deriv- 
a t ive  coeff ic ients  C + Cm were programed i n  the  single-degree- of -freedom 

equation of motion 

m 9 dr. 

and nmer i ca l ly  integrated.  
was used t o  calculate  C- + C- . The r e s u l t s  of these calculat ions were 

then compared with the  theore t ica l  solut ion t o  verif'y method 1. To ascer ta in  
the  va l id i ty  of method 2, Cm + Cm was obtained from the calculated values 

of C- + C- and then were compared with the  input values. 

The oscillation-amplitude t i m e  h i s to ry  obtained 

m m. 
9 U 

9 dr. 
m m. 

9 U 

The following two cases present N ASA-S-65-3304 

numerical comparisons made t o  verif'y 
the two methods. 

Case A . -  The f irst  case is  that of 
The a quadratic with posi t ive damping. 

value o f  C + Cm. was chosen as 
9 U 

m 

-6.55 x Q2. The osc i l la t ion-  
amplitude time h is tory  i n  f igure 1 was 
obtained by numerical integrat ion of 
equation (18); and from the t i m e  history, 
C- + C- was calculated by using equa- m m. 9 U 

t i o n  (17). 
e f f i c i en t  was then determined by using 
method 1. The calculated and theore t ica l  
values are compared i n  f igure 2. 

The theo re t i ca l  damping co- 

Method 2 was used t o  obtain 
C from the  calculated values of 

2 4 6 8 10 a m + m. 
9 U 

C 
0 

C- + C- of f igure 2, and t h e  r e s u l t s  m me a U 

Time, sec 
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F igure  3. - Variation of c, + Cme with e for case A. 
9 a  
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Case B. -  The second case i s  t h a t  of a quadratic with both posi t ive and neg- 

a t i v e  damping. The value of Cm + Cm 

Equation (18) was numerically integrated t o  obtain the  oscillation-amplitude time 

was chosen as 2.0 - 6.55 x lo-' e2 
9 & 

his tory  of f igure 4 which shows a l i m i t  cycle a t  35". From figure 4, C, + C- m m. 
4 a 

was calculated by using equation (161, and the  r e s u l t s  a r e  compared i n  f igure 5 
with the theo re t i ca l  coef f ic ien ts  obtained f r o m  method 1. Note that, both the  
theore t ica l  and computed values show zero damping a t  
expected. 

eo = 35", as would be 

Method 2 was used t o  obtain Cm + Cm from the  calculated values of 
9 dc 

c- + 
c r m r * 9  

q a 
and t h e  r e s u l t s  are compared with t h e  ac tua l  coef f ic ien t  m 

2.0 - 6.55 x lom3 e2 
0 a t  8 = l7.5", which i s  exact ly  one-half the  amplitude of the  l i m i t  cycle. 

i n  f igure 6. Both solut ions have damping coef f ic ien ts  of 

N ASASS-65-3307 

Time, sec 

Figure 4. - Oscillation-amplitude time history for case B, Cm + Cm- = 2 -6.55 x 10 -3 8 2 . 
9 a  
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Figure 5. - Variation of C, + CEh with 8, for case 6. 
9 

NASA-S-65-3308 
8 

6 

Computed Cm t Cma - 
9 

+ Cm. --- Actual  Cm 
9 a  

8. deg 

Figure 6. - Variation of c, t c,. with 8 for case B. 
9 a  
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One of the important applications of method 1 i s  the construction of an 
oscillation-amplitude time h is tory  when C 

gration of equation (16) ra ther  than numerically in tegra t ing  the e n t i r e  equation 
of motion. First, Cm + Cm 

by using equation (16), the  osc i l l a t ion  time h i s to ry  can be constructed with 

i s  known by numerical in te -  
+ 'm m q 6, 

i s  converted t o  C- + C- by method 1. Then, 
m m. q a q a 

small time steps 

This application 

By using method 1 

s o  tha t  both eo and C- + C, are considered t o  be constant. 
m. q a 

is  i l l u s t r a t e d  f o r  case B where: 
m 

c + cm = 2.0 - 6.55 x 10'3 e2 
q dL m 

This i s  s h m  i n  f igure 5. Subst i tut ing t h i s  value i n  equation (16) 

The time s tep  was a l t e red  s o  that 

the oscillation-amplitude time h i s to ry  obtained i s  s h m  i n  f igure 7. 
small differences between the ac tua l  and constructed time h i s t o r i e s  a re  attrib- 
uted t o  the  assumption tha t  C- + C- i s  constant over each time s tep.  A 

l i m i t  cycle of 35" is  a l s o  shown i n  t h i s  figure.  
cycle can a l s o  be found by solving f o r  t he  roots  of 

eo changed approximately 1" each step,  and 

The 

m& m 
9 

The amplitude of t he  l i m i t  
C- + C, m m. q a 

=- 

e = *35" 
0 
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Figure 7. - Oscillation-amplitude t ime history constructed from given c, t Cm., case 6. 
9 a 

Effect  o f  a nonlinear pitching moment.- I n  the  development of the  theory 
i n  t h i s  paper, only l i n e a r  pitching moments were considered. However, except 
f o r  small osc i l la t ions ,  the pitching moment fo r  many vehicles  i s  nonlinear with 
amplitude. To determine the  usef i lness  of t h i s  theory as applied t o  the non- 
l i n e a r  pi tching moment, the amplitude of a predicted l i m i t  cycle was compared 
with an a c t u a l  l i m i t  cycle, since t h i s  was believed t o  be the most severe lim- 
i t a t i o n .  The nonlinear pitching-moment coeff ic ient  was simulated i n  the  s ingle  
degree-of-freedom computer program by 

C = Be - B2e3 
m 

which i s  shown in  sketch ( b )  where unstable trim i s  denoted as 



Sketch (b) 

The damping coef f ic ien t  was  simulated i n  the computer program by 

C + Cm = A - A28 2 m cl & 
as shown i n  sketch ( e )  

Sketch (c) 

By using t h e  method of t h i s  paper, C- + C- w&s found to be m m. c l  a 

A2 02 
T o  C, +C, = A -  m m. 

U 
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as shown i n  sketch ( d )  where 

r e t i c a l  l i m i t  cycle 8 

program t o  vary the amplitude of the a c t u a l  l i m i t  cycle 

point  a t  which tumbling occurred. The values 'ai' and 8 were nondimen- 

s ional ized by dividing by 8 

v x  denotes the amplitude of the  theo- 

Various values of A w e r e  put i n t o  the  computer 

from 0 t o  the 
I C '  

8" 
I C  

l e  I C  

u t  - 

Sketch (d) 

From f igure  8, it can be assumed t h a t  the nonlinear pi tching moment would 
cause no appreciable e r r o r  i n  the  solut ion fo r  t he  amplitude of  the l i m i t  cycle 
up t o  values o f  0.7 81c/@ut. From 0.7 elCput to 0.9 81c/eut, the  e r r o r  

0 .1 .2 .3  .4 .5 .6 .7 .0 .9 1 .o 

01, 'e", 
Figure 8. - Comparison of actual l imit cycle with theoretical l imit cycle. 



increases; and for  values above the l i n e a r  approximation i s  not 

usable since it predicts  a l i m i t  cycle when, ac tua l ly ,  t m b l i n g  occurs. 
0.9 elc/eut, 

CONCLUDING REMARKS 

The aerodynamic p i t ch  damping coef f ic ien t  as a function of instantaneous 
angular displacement i s  re la ted  with the  aerodynamic p i t ch  damping coef f ic ien t  
as a flmction of o sc i l l a t ion  amplitude by a method i n  which the  Kiyloff- 
Bogoliuboff equivalent l inear iza t ion  technique i s  used. Power series expres- 
sions f o r  the  functions are developed and the  l i k e  coef f ic ien ts  of the series 
are equated t o  provide the relat ionship.  
cycle i s  small, the  damping coef f ic ien t  is  symmetrical, and the  pi tching moment 
is  l inear .  Comparisons with numerical integrat ion r e s u l t s  show no appreciable 
e r ror .  
sentative case and i s  found t o  be small, except when approaching unstable trim. 

It i s  assumed t h a t  the  damping per 

The e f f e c t  of a nonlinear pitching moment i s  considered f o r  a repre- 
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